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ABSTRACT 

A design procedure for a charged particle optical system where 

all second order matrix elements can be made to vanish simultaneously 

has been'described by Brown. 1 A proof is given that the system works 

as advertised. 
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1. Introduction 

Design criteria for a second-order magnetic optical achsomat 

have been described in a previous publication by Brown. 
1 Such a 

system will provide a transverse phase space configuration at the 

final point which is a faithful reproduction of the beam at the 

entrance to the system. The transformation matrix for the system 

vi11 be the identity matrix and all second order transverse terms 

will be identically zero. 

The beam line described consists of a number of identical cells. 

Each cell contains focusing anddefocusingouadrupole components 

and one or more dipoles to provide dispersion. Two sextupo1es are 

inserted into each cell. One sextupole will couple more strongly 

to second order terms in the horizontal phase space, while the 

other will couple more strongly to vertical terms. Corresponding 

sextupoles in all cells have identical magnetic fields. Thus 

two independent sextupole strengths are sufficient to make all 

second order terms vanish. 

The demonstration of the vanishing of all geometric second 

order terms is quite straightfoward. It is a direct consequence 

of the syrmnetry inherent in the cellularstructure of the beam 

line. The proof is provided in Brown's original paper. TO show 

that all chromatic second order terms also vanish is more subtle. 

Here we provide that demonstration. The consequences on the trans- 

formation matrix of the cellular structure are first determined. 

We then derive the relationships among the various second order 

terms and show that with only two independent sextupole strengths 

they may all be made to vanish simultaneously. The second order 
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matrix elements are then related to their driving terms and we 

explore in greater depth the relation among the various terms. 

Finally, a simple example is used to illustrate the mathematical 

formalism. 
, 

II. Cell Structure and the Transformation Matrix 

We assume that the beam line is comprised of a number of ident- 

ical cells such that the net transonaation matrix to first order is the 

identity. We further assume that the number of cells is equal 

to or greater than four, and that at no intermediate point in the beam 

line is a first order transformation equal to the identity matrix 

realised. 

The eigenvalues of the total transformation matrix of the 

beam line will then be just powers of those of a single cell. 

Since the eigenvalues of the total transformation matrix are unity,. 

those of a single cell will lie on the unit circle in the complex 

plane. In either transverse plane, the transformation matrix for 

a single cell may be written as 2 

R= cow + a sinu 

[' 

6 sinu 

- y sinp 00s.~ - 0 sinu 1 
Here the parameters a, 6, T, and P are used only to parametrize 

the transfer matrix, and no relation to any transmitted beam matrix 

is implied. Because of the assumptions made above, it follows 

that we must have sinu # 0. It is also necessary that 

BY - a2 = 1 

A beam line of n cells may now be equally well regarded as 

either a single cell followed by a beam line of n-l cells or as a 

beam line of n-l cells followed by a single cell. Since all cells 

are identical, the first cell has the same transformation matrix as 
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the last n-l cells. we identify a transformation matrix element 

by placin? after it in parenthesis the number of cells it represents. 

we may tber. write the following relationships for the total first 

a"d second-crder tra"Sformati0" matrices, indicated by the letters 

R and T respectively: 

R(n) = R(l)R("-1) = R("-l)R(") (3) 

T(n) = R(n-UT(l) + T("-l)R(l)R(l) (4) 

T(n) = R(l)T(n-1) + T(l)R("-l)R("-1) (51 

Since the letter T indicates a second order matrix, we must define 

what we mean by matrix multiplication involving T. To do so, we 

give an example by rewriting equation 1s) as: 

Tijk(“) z“ x- 

1 
Ri2U) Tiljk("-1) +‘; 

em 
T4~m~l~Rpj~n-1~q,,~n-l, (6) 

If we solve both (4) and (5) for T("-1) , equate the two results, 

and reformulate the new equation using (3), we derive 

T(n) = R(l)T(n)R-lU)R-l(l) (7) 

Thus the symmetry of the beam line requires certain algebraic 

relations among the second-order matrix elements. 

III. Simultaneous Vanishing of Second Order Terms 

We now insert two sextupoles in each cell and adjust their 

strengths so that two of the second order matrix elements are 

made to vanish, one in the horizontal plane and one in the vertical. 

We maintain the symmetry of the cells by giving identical exci- 

tations to corresponding sextupoles in different cells. 
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In maintaining the symmetry of the cells, all the second 

order geometric aberrations are kept identically equal to zero, 

as shown by Brown. 1 Therefore, we need consider only the conse- 

quences on the remaining chromatic terms. If we write out 

equation (7) for the chromatic terms, expressing the elements of 

the inverse R matrix in terms of those of the R matrix itself, 

we arrive at: 

T116 = Rll(l)R22(1)T116 - Rll(l)R21(1)T126 

+ R12(1)R22(1)T216 - R12(1)R21(1)T226 

T126 = -Rll(l)Rl2(l)Tll6 + Rll(l)Rll(l)T126 

-R12U)R12(1)T216 + R12(l)R11(1)T226 

T216 = R21(1)R22(1)T116 - R21(1)R21(1)T126 

+ R22(1)R22(1)T216 - R22(1)R21(1)T226 

T226 =-R21(l)R12(l)T116 + R21(1)Rll(l)T126 

-R22(l)R12(l)T216 + R22(1)Rll(l)T226 

l 81 

( 9) 

(10) 

(11) 

Because of Liouville's theorem, we have 

RllU)R22U) - R12(1)R21(1) = 1 (12) 

so that equations (8) and (11) may be seen to be identical. 

Applying Liouville's theorem to the second order terms for the 

entire beam line, we can also derive 

T116 + T226 = 0 (131 

We choose the sextupole strength so that the term T126 is made 

to vanish, then from equations (8) - (13) we can derive 



-6- 

2 R12(l~~21(1)T116 + R12 (1)R22(1)T216 = 0 (14) 

’ 2 R21WR22(1)T116 tiR22 2(ll - d.,,, = 0 
J (1.5) 

We now have two simultaneous ho&geneous linear equations 

for the terms Tl16 and T216. The determinant of the pair of 

equations is given by 

D= 2 )R U)R21(1) yR,22(1) - ? - R12 
I 12 J 

(1)R21(l)R22 2(1) 

I 

(16) 

i 
=- 2 R12 U)R21(11 

I" terms of the variables introduced in equation (11, we have 

D = 26~ sin2u 

= 2(a2+l) sin2u (17) 

By the assumptions stated in Section II, this expression cannot 

equal zero. Therefore, if the term T126 is made to vanish, then 

the matrix elements Tl16, T216, and T226 will necessarily vanish 

simultaneously. 

This same procedure may be used to show that if T346 is set 

to zero, then T336, T436, and T446 will also vanish. The only 

terms which remain unexamined are T166 and T226. If we write out 

equation (6) for these terms, deleting all terms which are known 

to vanish we derive 

T166 = Rll(l) T166 + R12(1) T266 
(18) 
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T266 = RZl(l) T166 + R22(1) T266 cl91 

The determinant of this pair of linear homogeneous 

equations is given by 

D = 2 - RllU) - R22U) 

= 2 (1 - cosu) (201 

which is also non-vanishing according to our assumptions. 

We have now proved the remaining two second-order matrix 

elements to vanish. Therefore, all second-order matrix elements 

may be made to vanish by the adjustment of two parameters. 

IV. Relation to Driving Terms 

An alternate interpretation of equations (4) and (5) can 

be illuminating. Consider an augmented beam line of n+l cells 

obtained by adding a single cell to the original beam line of n 

cells. The matrix T(n) in equation (4) represents the transfor- 

mation first through a single cell then one through n-l cells. 

The matrix T(n) in eqUatiOn (5) represents the tranSfOrmStiOn from 

the end of the first cell to the end of the last cell of the 

augmented beam line. It is regarded as a transformation first 

through yhe n-l cells numbered 2 through n, then through the 

. single remaining cell. In this comparison the terms R(n-1) and 

T(n-1) represent a transformation through the same set of n-l cells 

in equations (4) and (5). The two second order matrices representing 

n cells will have identical values for all elements because the two 

beam lines they describe are alike in all respects. 

we may now define cosinelike, sinelike, and dispersion 
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rays with the beginning of cell 2 as the point of origin. 

Henceforth they will be Aonoted by c*, s*, and d'. I" terms 

of the corresponding rays as defined from the beginning of the 

beam line we have 

C* = R22(1) c - R21(1).s 
l 

S = -R12(l)c + Rll(l) s 

d* = d + ac + 8s 

(21) 

(22) 

(23) 

where 

a = R12(11 R26'(11 - R22(1) R16(1) (24) 

6 = R21(11 R16(1) - Rll(l) R21(1) (25) 

We may also express the second order matrix elements in. 

terms of their driving terms. For purposes of illustration we use 

the expressions for the high energy limit as given by Brown. 3 

k‘e include only those contributions from quadrupoles and sextu- 

poles. In our configuration, the expressions for the horizontal 

c!uomatic terms are given by 

Tl16 = 
j 

T126 - 2&s 'd 
IX x 

j 

T216 
j 

T226 = -2~Sjcxsxd, 

%66 = 
j 

(26) 

(27) 

(28) 

(291 

(30) 
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T26,j = - 4 ) X X Ts.cd2 - 

I 4 f 
9 

Here the Sj indicate the normalized sextupole strengths 

(31) 

(32) 

where B. is the pole-tip field, a is the aperature, L 

the length, and Bp is the rigidity at the beam, given by its 

momentum divided by its charge. Thefqare the focal lengths 

of the quadrupoles where 

(33) 

The sums may be made either over the first n cells using 

the characteristic rays c, s, and d or over cells 2 through 

n + 1 using the rays c*, 
t 

s , end d*. Since the behavior of the 

characteristic rays is completely determined by first-order con- 

siderations, they will have identical values in cells 1 and n + 1. 

Therefore, in the expressions for the T matrix elements in terms 

of the starred functions, we may replace the contributions from cell 

n + 1 by equivalent contributions from cell 1. The aberrations 

are then given by identical sums through the same beam line of 

expressions using either starred or unstarred characteristic rays. 

Since the starred rays are linear combinations of the unstarred 

rays, the T matrix terms must then be linear combinations of each 

other. From this point of view we could again derive equations 

(8) - (11,. (14) and (151. and once again prove the properties 

of simultaneous vanishing of all the terms. 
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However, greater insight is obtained by considering an 

illustrative example. We select one in which the linear 

relationships among the T terms are particularly simple. 

As our illustration, we take the first example from Brown's 

paper. His beam line consists of four identical cells each 

of which is svmmetric front to back. 

The diagonal terms in the transfer matrix for one cell 

are then equal to zero. Therefore, after one cell, the sinelike 

and cosinelike rays simply exchange roles, except for some 

scale factors. We now have 

c’ = R12(1) s (34) 

=* = -R12(1) c (35) 

d* = d + (IC + 6s (36) 

If we write, for example, the expression for T126 in terms of 
t l t 

c, S, andd, we may then by substitution derive a new 

expression in terms of c, S. and d. Part of this new expression 

can be recognized as a constant times T216. Specifically, we have 

T126 = - Rl2 2(l)Tl26 + aR122(ll 
c 

Sjc 2 s + ER122(l) 
1 

Sjc 3 
(37) 

.j j 

The two last terms arise from the transformation of the 

dispersion ray. The expressions for the geometric terms Till 

and TZll are given by 

Tlll = TS.C 2 
- 3 x =x 

(38) 

(39) T211 = - cSjcx3 

j 
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These are but two of the geometric terms, all of which vanish 

identically due to the synunetrv of the beam. rhersfore, we have 

T126 = - 52 2(1) T216 

so that if one of these terms vanishes, the other must also. 

We may also show that 

T116 = T226 (41) 

But, by inspection we have 

T116 = - T226 C.42) 

Therefore, these must also both vanish identically. Similarly, 

we can demotistrate that the terms T166 and T266 must transform into 

each other and therefore vanish. Also, if one of the vertical 

second order terms TIJ6, Tja6, T436, and Tdd6 vanishes, the 

other three must vanish also. 

V. swnmary 

1n any system with the required symmetry, the characteristic 

rays, i.e., the sinelike, cosinelike, and dispersion rays, are 

equivalent to linear combinations of themselves. Therefore, 

the second-order terms are also equivalent to linear combinations 

of themselves. If one horizontal term vanishes, they they must all 

necessarily vanish. Similarly, if one term in the vertical plane 

vanishes, all vertical terms will necessarily vanish. Therefore, 

two independent sextupole strengths are sufficient to make all 

second order terms vanish. 
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